Transitional Colorado Assessment Program (TCAP) Assessment Framework

Mathematics - Grade 10

The assessment frameworks specify the content that will be eligible for assessment in the 2012 and 2013 TCAP by aligning the assessment objectives from the Colorado Model Content Standards (old standards) with the Colorado Academic Standards (new standards). TCAP supports the transition to the CAS during the next two years as a gradual approach to statewide measuring of student achievement of the new standards.

Please remember that the TCAP frameworks, and thus TCAP, are not inclusive of all of the Colorado Academic Standards (CAS). Districts should, however, still transition to the full range of the new standards as the complete set of CAS will be considered eligible content for inclusion in the new 2014 assessment.

The frameworks are organized as indicated in the table below:

Standard	Indicates the broad knowledge skills that all students should be acquiring in Colorado schools at grade level. Each standard is assessed every year.		
Benchmark	Tactical descriptions of the knowledge and skills students should acquire by each grade level assessed by the TCAP.		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
Specific knowledge and skills eligible for inclusion on TCAP for each grade level.	Provides the code(s) from the Colorado Academic Standards (CAS) that correspond(s) to the assessment objective.	Provides the text from the CAS which correspond(s) to the assessment objective.	Provides clarifying information.

The following may assist in understanding the revised frameworks:

- As the new standards are mastery based, any assessment objective that is aligned to a standard or a mathematical practice from the Colorado Academic Standards at the relevant grade level or below is eligible for assessment on the TCAP.
- A CAS may be aligned to multiple assessment objectives. To ensure a reasonable document length per grade, some instances of multiple CAS alignments have been omitted.
- Some assessment objectives, or parts of assessment objectives, do not explicitly align with the CAS but will still be assessed. Where this occurs, it is noted with language such as "this will continue to be assessed." The concepts from these assessment objectives are also compiled in a table at the bottom of each framework for easy reference. The purpose of continuing to assess non-CAS aligned objectives is to ensure the reliability and comparability of the TCAP to prior year's assessments.
- Assessment objectives and parts of assessment objectives that will no longer be assessed have been struck through and are included in the revised frameworks for purposes of comparison to the prior frameworks only.
- A key to the CAS Alignment Code can be by following this link:
http://www.cde.state.co.us/cdeassess/UAS/AdoptedAcademicStandards/CAS_Reference_system.pdf
The revised frameworks directly build off of the work done on the original Colorado Student Assessment Program (CSAP) frameworks and reflect a joint endeavor between the Office of Assessment, Research and Evaluation and the content specialists from the Office of Academic and Instructional Support.

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 1	Students develop number sense and use numbers and number relationships in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 1	Demonstrate meanings for real numbers, absolute value, and scientific notation using physical materials and technology in problem-solving situations.		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Compare and order sets of real numbers.	```MA10-GR.8-S.1-GLE.1- EO.c MA10-GR.6-S.1-GLE.3- EO.c.ii```	Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions. (CCSS: 8.NS.2) Write, interpret, and explain statements of order for rational numbers in real-world contexts. (CCSS: 6.NS.7b)	
b. Recognize and use equivalent representations of real numbers in a variety of forms including scientific notation, radicals, and other irrational numbers such as π.	$\begin{aligned} & \text { MA10-GR.8-S.1-GLE.1- } \\ & \text { EO.c } \end{aligned}$	Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions. (CCSS: 8.NS.2)	
	$\begin{aligned} & \text { MA10-GR.8-S.1-GLE.1- } \\ & \text { EO.d } \end{aligned}$	Apply the properties of integer exponents to generate equivalent numerical expressions. (CCSS: 8.EE.1)	
	$\begin{aligned} & \text { MA10-GR.8-S.1-GLE.1- } \\ & \text { EO.g } \end{aligned}$	Use numbers expressed in the form of a single digit times a whole-number power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. (CCSS: 8.EE.3)	
	```MA10-GR.8-S.1-GLE.1- EO.h (i-ii)```	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. (CCSS:   8.EE.4)   i. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities. (CCSS: 8.EE.4)   ii. Interpret scientific notation that has been generated by technology. (CCSS: 8.EE.4)	
	MA10-GR.HS-S.1-GLE.1EO.a.ii	Rewrite expressions involving radicals and rational exponents using the properties of exponents. (CCSS: N-RN.2)	

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 1	Students develop number sense and use numbers and number relationships in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 1	Demonstrate meanings for real numbers, absolute value, and scientific notation using physical materials and technology in problem-solving situations.		
c. Use very large and very small numbers in real life situations to solve problems (for example,	$\begin{aligned} & \text { MA10-GR8-S.1-GLE.1- } \\ & \text { EO. } 9 \end{aligned}$	Use numbers expressed in the form of a single digit times a whole-number power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. (CCSS: 8.EE.3)	
understanding the size of the national debt).	$\begin{aligned} & \text { MA10-GR.8-S.1-GLE.1- } \\ & \text { EO.h (i-ii) } \end{aligned}$	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. (CCSS: 8.EE.4)   i. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities. (CCSS: 8.EE.4)   ii. Interpret scientific notation that has been generated by technology. (CCSS: 8.EE.4)	



Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 1	Students develop number sense and use numbers and number relationships in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 2	Develop, test, and conjectures about the properties of number systems and sets of numbers.		
b. Verify and apply the properties of the operation "to the power of".	```MA10-GR.8-S.1-GLE.1- EO.h (i-ii)```	Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. (CCSS:   8.EE.4)   i. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities. (CCSS: 8.EE.4)   ii. Interpret scientific notation that has been generated by technology. (CCSS: 8.EE.4)	
	$\begin{aligned} & \text { MA10-GR.8-S.1-GLE.1- } \\ & \text { EO.d } \end{aligned}$	Apply the properties of integer exponents to generate equivalent numerical expressions. (CCSS: 8.EE.1)	
	MA10-GR.HS-S.1-GLE.1EO.a.ii	Rewrite expressions involving radicals and rational exponents using the properties of exponents. (CCSS: N-RN.2)	


Standard 1	Students develop number sense and use numbers and number relationships in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 3	Use number sense to estimate and justify the reasonableness of solutions to problems involving real numbers		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Use number sense to estimate and justify the reasonableness of solutions to problems involving real numbers.	$\begin{aligned} & \text { MA10-GR.7-S.2-GLE.2- } \\ & \text { EO.b } \end{aligned}$	Apply properties of operations to calculate with numbers in any form, convert between forms as appropriate, and assess the reasonableness of answers using mental computation and estimation strategies (CCSS: 7.EE.3)	
	$\begin{aligned} & \text { MA10-GR.7-S.4-GLE.2- } \\ & \text { EO.a } \end{aligned}$	State the formulas for the area and circumference of a circle and use them to solve problems. (CCSS: 7.G.4)	
	$\begin{aligned} & \text { MA10-GR.8-S.4-GLE.2- } \\ & \text { EO.b } \end{aligned}$	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. (CCSS: 8.G.7)	


Standard 2	Students use algebraic methods to explore, model, and describe patterns and functions involving numbers, shapes, data, and graphs in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 1	Model real world phenomena (for example, distance-versus-time relationships, compound interest, amortization tables, mortality rates) using functions, equations, inequalities, and matrices.		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Model real world phenomena involving linear, quadratic and exponential relationships using multiple representations of rules that can take the form of a recursive process, a function, an equation, or an inequality.	$\begin{aligned} & \text { MA10-GR.HS-S.2-GLE.2- } \\ & \text { EO.a (i-iii) } \end{aligned}$	Construct and compare linear, quadratic, and exponential models and solve problems. (CCSS: F-LE)   i. Distinguish between situations that can be modeled with linear functions and with exponential functions. (CCSS: F-LE.1)   1. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. (CCSS: F-LE.1a)   2. Identify situations in which one quantity changes at a constant rate per unit interval relative to another. (CCSS: F-LE.1b)   3. Identify situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another. (CCSS: F-LE.1c)   ii. Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs. (CCSS: F-LE.2)   iii. Use graphs and tables to describe that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. (CCSS: F-LE.3)	
	MA10-GR.HS-S.2-GLE.4EO.a.i.	Create equations and inequalities in one variable and use them to solve problems. (CCSS: A-CED.1)	

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 2	Students use algebraic methods to explore, model, and describe patterns and functions involving numbers, shapes, data, and graphs in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 2	Represent functional relationships using written explanations, tables, equations, and graphs and describe the connections among these representations.		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Represent functional relationships using written explanations, tables, equations, and	MA10-GR.8-S.2-GLE.3EO.a.iii	Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). (CCSS: 8.F.2)	
the connections among these representations.	$\begin{aligned} & \text { MA10-GR.8-S.2-GLE.3- } \\ & \text { EO.b } \end{aligned}$	Use functions to model relationships between quantities. (CCSS: 8.F)	
b. Convert from one functional representation to another.	$\begin{aligned} & \text { MA10-GR.8-S.2-GLE.3- } \\ & \text { EO.b (i-vi) } \end{aligned}$	Use functions to model relationships between quantities. (CCSS: 8.F)   i. Construct a function to model a linear relationship between two quantities. (CCSS: 8.F.4)   ii. Determine the rate of change and initial value of the function from a description of a relationship or from two ( $x, y$ ) values, including reading these from a table or from a graph. (CCSS: 8.F.4)   iii. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. (CCSS: 8.F.4)   iv. Describe qualitatively the functional relationship between two quantities by analyzing a graph. (CCSS: 8.F.5)   v. Sketch a graph that exhibits the qualitative features of a function that has been described verbally. (CCSS: 8.F.5)   vi. Analyze how credit and debt impact personal financial goals (PFL)	


Standard 2	Students use algebraic methods to explore, model, and describe patterns and functions involving numbers, shapes, data, and graphs in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 2	Represent functional relationships using written explanations, tables, equations, and graphs and describe the connections among these representations.		
c. Interpret a graphical representation of a real-world situation.	MA10-GR.8-S.2-GLE.3EO.b.iv	Describe qualitatively the functional relationship between two quantities by analyzing a graph. (CCSS: 8.F.5)	
	$\begin{aligned} & \text { MA10-GR.HS-S.2-GLE.1- } \\ & \text { EO.b } \end{aligned}$	Interpret functions that arise in applications in terms of the context. (CCSS: F-IF)	
	$\begin{aligned} & \text { MA10-GR.8-S.3-GLE.1- } \\ & \text { EO.b } \end{aligned}$	Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association. (CCSS: 8.SP.1)	
Standard 2	Students use algebraic methods to explore, model, and describe patterns and functions involving numbers, shapes, data, and graphs in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 3	Solve problems involving functional relationships using graphing calculators and/or computers as well as appropriate paper-and-pencil techniques.		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Solve problems involving functions and relations using calculators, graphs, tables, and algebraic methods.	$\begin{aligned} & \text { MA10-GR.8-S.2-GLE.3- } \\ & \text { EO.b (i-vi) } \end{aligned}$	Use functions to model relationships between quantities. (CCSS: 8.F)   i. Construct a function to model a linear relationship between two quantities. (CCSS: 8.F.4)   ii. Determine the rate of change and initial value of the function from a description of a relationship or from two ( $x, y$ ) values, including reading these from a table or from a graph. (CCSS: 8.F.4)   iii. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. (CCSS: 8.F.4)   iv. Describe qualitatively the functional relationship between two quantities by analyzing a graph. (CCSS: 8.F.5)   v. Sketch a graph that exhibits the qualitative features of a function that has been described verbally. (CCSS: 8.F.5)   vi. Analyze how credit and debt impact personal financial goals (PFL)	


Standard 2	Students use algebraic methods to explore, model, and describe patterns and functions involving numbers, shapes, data, and graphs in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 3	Solve problems involving functional relationships using graphing calculators and/or computers as well as appropriate paper-and-pencil techniques.		
b. Solve simple systems of equations using algebraic, graphical or numeric methods.	$\begin{aligned} & \text { MA10-GR.8-S.2-GLE.2- } \\ & \text { EO.b (i-iii) } \end{aligned}$	Analyze and solve pairs of simultaneous linear equations. (CCSS: 8.EE.8)   i. Explain that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously. (CCSS: 8.EE.8a)   ii. Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. (CCSS: 8.EE.8b)   iii. Solve real-world and mathematical problems leading to two linear equations in two variables. (CCSS: 8.EE.8c)	
c. Solve equations with more than one variable for a given variable (for example, solve for p in $1=\mathrm{prt}$ or for $r$ in $C=2 \pi r$ ).	$\begin{aligned} & \text { MA10-GR.HS-S.2-GLE.4- } \\ & \text { EO.a.iv } \end{aligned}$	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.   (CCSS: A-CED.4)	




Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

| Standard 2 | Students use algebraic methods to explore, model, and describe patterns and functions involving numbers, <br> shapes, data, and graphs in problem-solving situations and communicate the reasoning used in solving these <br> problems. |  |
| :--- | :--- | :--- | :--- |
| Benchmark 5 | Interpret algebraic equations and inequalities geometrically and describe geometric relationships algebraically. |  |
| c. Describe geometric <br> relationships <br> algebraically. MA10-GR8-S.2-GLE.3- <br> EO.bUse functions to model relationships between <br> quantities. (CCSS: 8.F) |  |  |


Standard 3	Students use data collection and analysis, statistics, and probability in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 1	Design and conduct a statistical experiment to study a problem, and interpret and communicate the results using the appropriate technology (for example, graphing calculators, computer software).		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Identify factors which may have affected the outcome of a survey (for example, biased questions of collection methods).	$\begin{aligned} & \text { MA10-GR.7-S.3-GLE.1- } \\ & \text { EO.a (i-iv) } \end{aligned}$	Use random sampling to draw inferences about a population. (CCSS: 7.SP)   i. Explain that generalizations about a population from a sample are valid only if the sample is representative of that population. (CCSS: 7.SP.1)   ii. Explain that random sampling tends to produce representative samples and support valid inferences. (CCSS: 7.SP.1)   iii. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. (CCSS: 7.SP.2)   iv. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. (CCSS: 7.SP.2)	The CAS only refers to methods of data collection that may affect the outcome of a survey.
b. Draw conclusions about a large population based upon a properly chosen random sample.	$\begin{aligned} & \text { MA10-GR.7-S.3-GLE.1- } \\ & \text { EO.a (i-iv) } \end{aligned}$	Use random sampling to draw inferences about a population. (CCSS: 7.SP)   i. Explain that generalizations about a population from a sample are valid only if the sample is representative of that population. (CCSS: 7.SP.1)   ii. Explain that random sampling tends to produce representative samples and support valid inferences. (CCSS: 7.SP.1)   iii. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. (CCSS: 7.SP.2)   iv. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. (CCSS: 7.SP.2)	


Standard 3	Students use data collection and analysis, statistics, and probability in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 1	Design and conduct a statistical experiment to study a problem, and interpret and communicate the results using the appropriate technology (for example, graphing calculators, computer software).		
c. Select and use an appropriate display to represent and describe a set of data (for example, scatter plot, line graph and histogram).	MA10-GR.6-S.3-GLE.1EO.d (i-ii and 1-4)	Summarize and describe distributions. (CCSS: 6.SP)   i. Display numerical data in plots on a number line, including dot plots, histograms, and box plots. (CCSS: 6.SP.4)   ii. Summarize numerical data sets in relation to their context. (CCSS: 6.SP.5)   1. Report the number of observations. (CCSS: 6.SP.5a)   2. Describe the nature of the attribute under investigation, including how it was measured and its units of measurement. (CCSS: 6.SP.5b)   3. Give quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. (CCSS: 6.SP.5c)   4. Relate the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered. (CCSS: 6.SP.5d)	This is related to the standard for mathematical practice, "Use appropriate tools strategically."
	$\begin{aligned} & \text { MA10-GR.8-S.3-GLE.1- } \\ & \text { EO.a } \end{aligned}$	Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. (CCSS: 8.SP.1)	


Standard 3	Students use data collection and analysis, statistics, and probability in problem-solving situations and   communicate the reasoning used in solving these problems.		
Benchmark 2	Analyze statistical claims for erroneous conclusions or distortions.		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a.- Check a graph, table   or summary for   misteading   eharacteristics.			This is not explicitly in the   CAS.


Standard 3	Students use data collection and analysis, statistics, and probability in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 2	Analyze statistical claims for erroneous conclusions or distortions.		
b. Recognize the misuse of statistical data in written arguments.	```MA10-GR.7-S.3-GLE.1- EO.a (i-iv)```	Use random sampling to draw inferences about a population. (CCSS: 7.SP)   i. Explain that generalizations about a population from a sample are valid only if the sample is representative of that population. (CCSS: 7.SP.1)   ii. Explain that random sampling tends to produce representative samples and support valid inferences. (CCSS: 7.SP.1)   iii. Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. (CCSS: 7.SP.2)   iv. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions. (CCSS: 7.SP.2)	The CAS only refers to misuse associated with sampling methods.
c. Describe how data can be interpreted in more than one way or be used to support more than one position in a debate.	```MA10-GR.6-S.3-GLE.1- EO.d.ii (1-4)```	Summarize numerical data sets in relation to their context. (CCSS: 6.SP.5)   1. Report the number of observations. (CCSS:6.SP.5a)   2. Describe the nature of the attribute under investigation, including how it was measured and its units of measurement. (CCSS: 6.SP.5b)   3. Give quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. (CCSS: 6.SP.5c)   4. 4. Relate the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered. (CCSS: 6.SP.5d)	This part of the standard for mathematical practice, "Construct viable arguments and critique the reasoning of others."

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 3	Students use data collection and analysis, statistics, and probability in problem-solving situations and   communicate the reasoning used in solving these problems.	
Benchmark 2	Analyze statistical claims for erroneous conclusions or distortions.	
d.-Describe how the		
responses to a survey		
ean be affected by the		
way the questions are		
phrased and/or by the		
reader's bias.		


Standard 3	Students use data collection and analysis, statistics, and probability in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 3	Fit curves to scatter plots using informal methods or appropriate technology to determine the strength of the relationship between two data sets and to make predictions.		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Graph data sets, create a scatter plot, and identify the control (independent) variable and dependent variable.	MA10-GR.HS-S.3-GLE.1EO.b.ii	Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. (CCSS: S-ID.6)	
	$\begin{aligned} & \text { MA10-GR.6-S.2-GLE.2- } \\ & \text { EO.g } \end{aligned}$	Represent and analyze quantitative relationships between dependent and independent variables. (CCSS: 6.EE)	
b. Determine a line of best fit from a scatter plot using visual techniques.	$\begin{aligned} & \text { MA10-GR.8-S.3-GLE.1- } \\ & \text { EO.C } \end{aligned}$	For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. (CCSS: 8.SP.2)	
c. Predict values using a line of best fit.	$\begin{aligned} & \text { MA10-GR.8-S.3-GLE.1- } \\ & \text { EO.d } \end{aligned}$	Use the equation of a linear model to solve problems in the context of bivariate measurement data, interpreting the slope and intercept. (CCSS: 8.SP.3)	
	MA10-GR.HS-S.3-GLE.1EO.b.ii. 3	Fit a linear function for a scatter plot that suggests a linear association. (CCSS: SID.6c)	
d. Show how extrapolation may lead to faulty conclusions.	$\begin{aligned} & \text { MA10-GR.8-S.3-GLE.1- } \\ & \text { EO.C } \end{aligned}$	For scatter plots that suggest a linear association, informally fit a straight line, and informally assess the model fit by judging the closeness of the data points to the line. (CCSS: 8.SP.2)	This is part of the standard for mathematical practice, "Model with mathematics."
	MA10-GR.HS-S.3-GLE.1EO.b.ii. 1	Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. (CCSS: S-ID.6a)	

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 3	Students use data collection and analysis, statistics, and probability in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 3	Fit curves to scatter plots using informal methods or appropriate technology to determine the strength of the relationship between two data sets and to make predictions.		
e. Recognize which model, linear or nonlinear, fits the data	MA10-GR.HS-S.3-GLE.1EO.b.ii	Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. (CCSS: S-ID.6)	
most appropriately.	MA10-GR.HS-S.3-GLE.1EO.b.ii. 1	Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. (CCSS: S-ID.6a)	
	MA10-GR.HS-S.2-GLE.2EO.a.ii	Distinguish between situations that can be modeled with linear functions and with exponential functions.   (CCSS: F-LE.1)	


Standard 3	Students use data collection and analysis, statistics, and probability in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 4	Draw conclusions about distributions of data based on analysis of statistical summaries (for example, the combination of mean and standard deviation, and differences between the mean and median).		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Differentiate between mean, median, and mode and demonstrate the appropriate use of each.	MA10-GR.6-S.3-GLE.1EO.d (i-ii and 1-4)	Summarize and describe distributions. (CCSS: 6.SP)   i. Display numerical data in plots on a number line, including dot plots, histograms, and box plots. (CCSS: 6.SP.4)   ii. Summarize numerical data sets in relation to their context. (CCSS: 6.SP.5)   1. Report the number of observations. (CCSS: 6.SP.5a)   2. Describe the nature of the attribute under investigation, including how it was measured and its units of measurement. (CCSS: 6.SP.5b)   3. Give quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered. (CCSS: 6.SP.5c)   4. Relate the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered. (CCSS: 6.SP.5d)	Mode is not contained in the CAS.
b. Recognize and classify various types of distributions (for example, bimodal, skewed, uniform, binomial, normal).	```MA10-GR.HS-S.3-GLE.1- EO.a.iii```	Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). (CCSS: SID.3)	The examples listed are not explicitly in the CAS but students should be familiar with the vocabulary.
c. Use the mean and standard deviation to determine relative positions of data points in a normal distribution of authentic data.			This is not explicit for $10^{\text {th }}$ grade and below in the CAS, however this assessment objective will continue to be assessed.


| Standard 3 | Students use data collection and analysis, statistics, and probability in problem-solving situations and <br> communicate the reasoning used in solving these problems. |
| :--- | :--- | :--- |
| Benchmark 4 | Draw conclusions about distributions of data based on analysis of statistical summaries (for example, the <br> combination of mean and standard deviation, and differences between the mean and median). |
| d.Demonstrate how <br> outliers might affect <br> various <br> representations of <br> data and measures of <br> central tendency.MA10-GR.6-S.3-GLE.1- <br> EO.d.ii.3 | Give quantitative measures of center (median and/or <br> mean) and variability (interquartile range and/or <br> mean absolute deviation), as well as describing any <br> overall pattern and any striking deviations from the <br> overall pattern with reference to the context in which <br> the data were gathered. (CCSS: 6.SP.5c) |


Standard 3	Students use data collection and analysis, statistics, and probability in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 5	Use experimental and theoretical probability to represent and solve problems involving uncertainty (for example, the chance of playing professional sports if a student is a successful high school athlete).		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Determine the probability of an identified event using the sample space.	$\begin{aligned} & \text { MA10-GR.7-S.3-GLE.2- } \\ & \text { EO.d (i-iv) } \end{aligned}$	Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. (CCSS: 7.SP.8)   i. Explain that the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. (CCSS: 7.SP.8a)   ii. Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. (CCSS: 7.SP.8b)   iii. For an event described in everyday language identify the outcomes in the sample space which compose the event. (CCSS: 7.SP.8b)   iv. Design and use a simulation to generate frequencies for compound events. (CCSS: 7.SP.8c)	


Standard 3	Students use data collection and analysis, statistics, and probability in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 5	Use experimental and theoretical probability to represent and solve problems involving uncertainty (for example, the chance of playing professional sports if a student is a successful high school athlete).		
b. Distinguish between experimental and theoretical probability and use each appropriately.	$\begin{aligned} & \text { MA10-GR.7-S.3-GLE.2- } \\ & \text { EO.c (i-iii) } \end{aligned}$	Develop a probability model and use it to find probabilities of events. (CCSS: 7.SP.7)   i. Compare probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy. (CCSS: 7.SP.7)   ii. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. (CCSS: 7.SP.7a)   iii. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. (CCSS: 7.SP.7b)	
c. Differentiate between independent and dependent events to calculate the probability in realworld situations.	$\begin{aligned} & \text { MA10-GR.HS-S.3-GLE.3- } \\ & \text { EO.a (i-iii) } \end{aligned}$	Understand independence and conditional probability and use them to interpret data. (CCSS: S-CP)   i. Describe events as subsets of a sample space using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events. (CCSS: S-CP.1)   ii. Explain that two events $A$ and $B$ are independent if the probability of $A$ and $B$ occurring together is the product of their probabilities, and use this characterization to determine if they are independent. (CCSS: SCP.2)   iii. Using the conditional probability of $A$ given $B$ as $P(A$ and $B) / P(B)$, interpret the independence of $A$ and $B$ as saying that the conditional probability of $A$ given $B$ is the same as the probability of A , and the conditional probability of $B$ given $A$ is the same as the probability of $B$. (CCSS: S-CP.3)	Dependence is called conditional probability in the CAS

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 3	Students use data collection and analysis, statistics, and probability in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 5	Use experimental and theoretical probability to represent and solve problems involving uncertainty (for example, the chance of playing professional sports if a student is a successful high school athlete).		
d. Calculate the probability of event A and $B$ occurring and the probability of event A or B occurring.	MA10-GR.HS-S.3-GLE.3EO.b (i-ii)	Use the rules of probability to compute probabilities of compound events in a uniform probability model.   (CCSS: S-CP)   i. Find the conditional probability of $A$ given $B$ as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model. (CCSS: S-CP.6)   ii. $\quad$ Apply the Addition Rule, $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+$ $P(B)-P(A$ and $B)$, and interpret the answer in terms of the model. (CCSS: S-CP.7)	
e.-Use area modets to determine probability (for example, the probability of hitting the bull's eye region in a target).			This is not explicitly in the CAS.


Standard 3	Students use data collection and analysis, statistics, and probability in problem-solving situations and   communicate the reasoning used in solving these problems.		
Benchmark 6	Solve real-world problems with informal use of combinations and permutations for example, determining the   number of possible meals at a restaurant featuring a given number of side dishes).		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a.-Apply organized   eounting techniques to   determine   eombinations and   permutations in   problem-solving   situations.			This is not explicitly in the

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 4	Students use geometric concepts, properties, and relationships in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 1	Find and analyze relationships among geometric figures using transformations (for example, reflections, translations, rotations, dilations) in coordinate systems.		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Describe and apply the properties of similar and congruent figures.	$\begin{aligned} & \text { MA10-GR.HS-S.4-GLE.2- } \\ & \text { EO.b } \end{aligned}$	Prove theorems involving similarity. (CCSS: G-SRT)	
	MA10-GR.HS-S.4-GLE.2EO.b.i	Prove theorems about triangles. (CCSS: G-SRT.4)	
	$\begin{aligned} & \text { MA10-GR.HS-S.4-GLE.2- } \\ & \text { EO.b.ii } \end{aligned}$	Prove that all circles are similar. (CCSS: G-C.1)	
	MA10-GR.HS-S.4-GLE.2EO.b.iii	Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. (CCSS: G-SRT.5)	
b. Solve problems involving symmetry and transformations.	MA10-GR.8-S.4-GLE.1-   EO.a	Verify experimentally the properties of rotations, reflections, and translations. (CCSS: 8.G.1)	
	$\begin{aligned} & \text { MA10-GR.8-S.4-GLE.1- } \\ & \text { EO.b } \end{aligned}$	Describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates. (CCSS: 8.G.3)	
	$\begin{aligned} & \text { MA10-GR.8-S.4-GLE.1- } \\ & \text { EO.C } \end{aligned}$	Demonstrate that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations. (CCSS: 8.G.2)	
	$\begin{aligned} & \text { MA10-GR.8-S.4-GLE.1- } \\ & \text { EO.d } \end{aligned}$	Given two congruent figures, describe a sequence of transformations that exhibits the congruence between them. (CCSS: 8.G.2)	
	MA10-GR.8-S.4-GLE.1EO.e	Demonstrate that a two-dimensional figure is similar to another if the second can be obtained from the first by a sequence of rotations, reflections, translations, and dilations. (CCSS: 8.G.4)	
	$\begin{aligned} & \text { MA10-GR.8-S.4-GLE.1- } \\ & \text { EO.f } \end{aligned}$	Given two similar two-dimensional figures, describe a sequence of transformations that exhibits the similarity between them. (CCSS: 8.G.4)	
	$\begin{aligned} & \text { MA10-GR.8-S.4-GLE.1- } \\ & \text { EO.g } \end{aligned}$	Use informal arguments to establish facts about the angle sum and exterior angle of triangles, about the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles. (CCSS: 8.G.5)	

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 4	Students use geometric concepts, properties, and relationships in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 1	Find and analyze relationships among geometric figures using transformations (for example, reflections, translations, rotations, dilations) in coordinate systems.		
c. Use coordinate geometry and/or tessellations to solve problems.	$\begin{aligned} & \text { MA10-GR.HS-S.4-GLE.3- } \\ & \text { EO.a.ii (1-4) } \end{aligned}$	Use coordinates to prove simple geometric theorems algebraically. (CCSS: G-GPE)   1. Use coordinates to prove simple geometric theorems algebraically. (CCSS: G-GPE.4)   2. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems. (CCSS: G-GPE.5)   3. Find the point on a directed line segment between two given points that partitions the segment in a given ratio. (CCSS: G-GPE.6)   4. Use coordinates and the distance formula to compute perimeters of polygons and areas of triangles and rectangles. ${ }^{\star}$ (CCSS: G-GPE.7)	Tessellations are not explicitly in the CAS.
d. Describe cylinders, cones and spheres that result from the rotation of rectangles, triangles and semicircles about a line.			This content is not explicitly in the CAS, however it will continue to be assessed.


Standard 4	Students use geometric concepts, properties, and relationships in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 2	Derive and use methods to measure perimeter, area, and volume of regular and irregular geometric figures.		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Use the Pythagorean Theorem and its converse to solve realworld problems.	$\begin{aligned} & \text { MA10-GR.6-S.4-GLE.1- } \\ & \text { EO.a.i } \end{aligned}$	Find the area of right triangles, other triangles, special quadrilaterals, and polygons by composing into rectangles or decomposing into triangles and other shapes. (CCSS: 6.G.1)	
	$\begin{aligned} & \text { MA10-GR.8-S.4-GLE.2- } \\ & \text { EO.b } \end{aligned}$	Apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two and three dimensions. (CCSS: 8.G.7)	

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

| Standard 4 | Students use geometric concepts, properties, and relationships in problem-solving situations and communicate <br> the reasoning used in solving these problems. |  |
| :--- | :--- | :--- | :--- |
| Benchmark 2 | Derive and use methods to measure perimeter, area, and volume of regular and irregular geometric figures. |  |
| b. Use properties of |  |  |
| polygons to find areas <br> of regular and <br> irregular figures. | MA10-GR.7-S.4-GLE.2- <br> EO.d | Solve real-world and mathematical problems involving <br> area, volume and surface area of two- and three- <br> dimensional objects composed of triangles, <br> quadrilaterals, polygons, cubes, and right prisms. <br> (CCSS: 7.G.6) |
| c.Use properties of <br> geometric solids to <br> find volumes and <br> surface areas of <br> regular and irregular <br> geometric solids. | MA10-GR.8-S.4-GLE.2- <br> EO.d | State the formulas for the volumes of cones, cylinders, <br> and spheres and use them to solve real-world and <br> mathematical problems. (CCSS: 8.G.9) |
|  | EO10-GR.7-S.-S.4-GLE.2- | Solve real-world and mathematical problems involving <br> area, volume and surface area of two- and three- <br> dimensional objects composed of triangles, <br> quadrilaterals, polygons, cubes, and right prisms. <br> (CCSS: 7.G.6) |

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 4	Students use geometric concepts, properties, and relationships in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 3	Make and test conjectures about geometric shapes and their properties, incorporating technology where appropriate.		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Make and test conjectures about geometric shapes and their properties to include parallelism and perpendicularity, numerical relationships on a triangle, relationships between triangles, and properties of quadrilaterals and regular polygons.	MA10-GR.HS-S.4-GLE.1EO.a (i-viii)	Experiment with transformations in the plane. (CCSS: G-CO)   i. State precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc. (CCSS: G-CO.1)   ii. Represent transformations in the plane using appropriate tools. (CCSS: G-CO.2)   iii. Describe transformations as functions that take points in the plane as inputs and give other points as outputs. (CCSS: G-CO.2)   iv. Compare transformations that preserve distance and angle to those that do not. (CCSS: G-CO.2)   v. Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself. (CCSS: GCO.3)   vi. Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments. (CCSS: G-CO.4)   vii. Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using appropriate tools. (CCSS: G-CO.5)   viii. Specify a sequence of transformations that will carry a given figure onto another. (CCSS: GCO.5)	

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 4	Students use geometric concepts, properties, and relationships in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 3	Make and test conjectures about geometric shapes and their properties, incorporating technology where appropriate.		
Assessment Objective "a" continued:   Make and test   conjectures about geometric shapes and their properties to include parallelism and perpendicularity, numerical relationships on a triangle, relationships between triangles, and properties of quadrilaterals and regular polygons.	$\begin{aligned} & \text { MA10-GR.HS-S.4-GLE.1- } \\ & \text { EO.b (i-iv) } \end{aligned}$	Understand congruence in terms of rigid motions.   (CCSS: G-CO)   i. Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure. (CCSS: GCO.6)   ii. Given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent. (CCSS: G-CO.6)   iii. Use the definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. (CCSS: G-CO.7)   iv. Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow from the definition of congruence in terms of rigid motions. (CCSS: G-CO.8)	
	$\begin{aligned} & \text { MA10-GR.HS-S.4-GLE.1- } \\ & \text { EO.c (i-iii) } \end{aligned}$	Prove geometric theorems. (CCSS: G-CO)   i. Prove theorems about lines and angles. (CCSS: G-CO.9)   ii. Prove theorems about triangles. (CCSS: GCO.10)   iii. Prove theorems about parallelograms. (CCSS: G-CO.11)	


Standard 4	Students use geometric concepts, properties, and relationships in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 3	Make and test conjectures about geometric shapes and their properties, incorporating technology where appropriate.		
Assessment Objective "a" continued:   Make and test conjectures about geometric shapes and their properties to include parallelism and perpendicularity, numerical relationships on a triangle, relationships between triangles, and properties of quadrilaterals and regular polygons.	$\begin{aligned} & \text { MA10-GR.HS-S.4-GLE.2- } \\ & \text { EO.a (i-iv) } \end{aligned}$	Understand similarity in terms of similarity transformations. (CCSS: G-SRT)   i. Verify experimentally the properties of dilations given by a center and a scale factor. (CCSS: GSRT.1)   1. Show that a dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. (CCSS: GSRT.1a)   2. Show that the dilation of a line segment is longer or shorter in the ratio given by the scale factor. (CCSS: G-SRT.1b)   ii. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar. (CCSS: G-SRT.2)   iii. Explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. (CCSS: G-SRT.2)   iv. Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar. (CCSS: G-SRT.3)	
	$\begin{aligned} & \text { MA10-GR.HS-S.4-GLE.2- } \\ & \text { EO.b (i-iii) } \end{aligned}$	Prove theorems involving similarity. (CCSS: G-SRT)   i. Prove theorems about triangles (CCSS: GSRT.4)   ii. Prove that all circles are similar. (CCSS: G-C.1)   iii. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. (CCSS: GSRT.5)	
	MA10-GR.HS-S.4-GLE.2EO.e.ii	Construct the inscribed and circumscribed circles of a triangle. (CCSS: G-C.3)	

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 4	Students use geometric concepts, properties, and relationships in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 3	Make and test conjectures about geometric shapes and their properties, incorporating technology where appropriate.		
b. Apply geometric relationships such as parallelism and perpendicularity, numerical	$\begin{aligned} & \text { MA10-GR.7-S.4-GLE.2- } \\ & \text { EO.d } \end{aligned}$	Solve real-world and mathematical problems involving area, volume and surface area of two- and threedimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. (CCSS: 7.G.6)	
relationships on a triangle, relationships between triangles, and properties of quadrilaterals and regular polygons to solve problems.	MA10-GR.HS-S.4-GLE.1EO.a (i-viii)	Experiment with transformations in the plane. (CCSS:   G-CO)   i. State precise definitions of angle, circle, perpendicular line, parallel line, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc. (CCSS: G-CO.1)   ii. Represent transformations in the plane using appropriate tools. (CCSS: G-CO.2)   iii. Describe transformations as functions that take points in the plane as inputs and give other points as outputs. (CCSS: G-CO.2)   iv. Compare transformations that preserve distance and angle to those that do not. (CCSS: G-CO.2)   v. Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself. (CCSS: GCO.3)   vi. Develop definitions of rotations, reflections, and translations in terms of angles, circles, perpendicular lines, parallel lines, and line segments. (CCSS: G-CO.4)   vii. Given a geometric figure and a rotation, reflection, or translation, draw the transformed figure using appropriate tools. (CCSS: G-CO.5)   viii. Specify a sequence of transformations that will carry a given figure onto another. (CCSS: GCO.5)	

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10


Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 4	Students use geometric concepts, properties, and relationships in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 3	Make and test conjectures about geometric shapes and their properties, incorporating technology where appropriate.		
Assessment Objective "b" continued:   Apply geometric relationships such as parallelism and perpendicularity, numerical relationships on a triangle, relationships between triangles, and properties of quadrilaterals and regular polygons to solve problems.	```MA10-GR.HS-S.4-GLE.2- EO.a (i-iv)```	Understand similarity in terms of similarity transformations. (CCSS: G-SRT)   i. Verify experimentally the properties of dilations given by a center and a scale factor. (CCSS: GSRT.1)   1. Show that a dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. (CCSS: GSRT.1a)   2. Show that the dilation of a line segment is longer or shorter in the ratio given by the scale factor. (CCSS: G-SRT.1b)   ii. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar. (CCSS: G-SRT.2)   iii. Explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. (CCSS: G-SRT.2)   iv. Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar. (CCSS: G-SRT.3)	
	$\begin{aligned} & \text { MA10-GR.HS-S.4-GLE.2- } \\ & \text { EO.b (i-iii) } \end{aligned}$	Prove theorems involving similarity. (CCSS: G-SRT)   i. Prove theorems about triangles. (CCSS: GSRT.4)   ii. Prove that all circles are similar. (CCSS: G-C.1)   iii. Use congruence and similarity criteria for triangles to solve problems and to prove relationships in geometric figures. (CCSS: GSRT.5)	

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 4	Students use geometric concepts, properties, and relationships in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 4	Use trigonometric ratios in problem-solving situations (for example, finding the height of a building from a given point, if the distance to the building and the angle of elevation are known).		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Use right triangle trigonometry to solve real-world problems.	$\begin{aligned} & \text { MA10-GR.HS-S.4-GLE.2- } \\ & \text { EO.c (i-iii) } \end{aligned}$	Define trigonometric ratios and solve problems involving right triangles. (CCSS: G-SRT)   i. Explain that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles. (CCSS: G-SRT.6)   ii. Explain and use the relationship between the sine and cosine of complementary angles. (CCSS: G-SRT.7)   iii. Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems. (CCSS: G-SRT.8)	


Standard 5	Students use a variety of tools and techniques to measure, apply the results in problem-solving situations, and communicate the reasoning used in solving these problems.		
Benchmark 1	Measure quantities indirectly using techniques of algebra, geometry, or trigonometry.		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Use appropriate measurements to solve problems indirectly (for example, find the height of a flagpole using similar triangles.	$\begin{aligned} & \text { MA10-GR.HS-S.4-GLE.2- } \\ & \text { EO.a (i-iv) } \end{aligned}$	Understand similarity in terms of similarity transformations. (CCSS: G-SRT)   i. Verify experimentally the properties of dilations given by a center and a scale factor. (CCSS: GSRT.1)   1. Show that a dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. (CCSS: GSRT.1a)   2. Show that the dilation of a line segment is longer or shorter in the ratio given by the scale factor. (CCSS: G-SRT.1b)   ii. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar. (CCSS: G-SRT.2)   iii. Explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. (CCSS: G-SRT.2)   iv. Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar. (CCSS: G-SRT.3)	

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 5	Students use a variety of tools and techniques to measure, apply the results in problem-solving situations, and communicate the reasoning used in solving these problems.		
Benchmark 1	Measure quantities indirectly using techniques of algebra, geometry, or trigonometry.		
b. Use measurement to solve real-world problems involving rate of change (for example, distance traveled using rate and time).	$\begin{aligned} & \text { MA10-GR.8-S.2-GLE.3- } \\ & \text { EO.b (i-vi) } \end{aligned}$	Use functions to model relationships between quantities. (CCSS: 8.F)   i. Construct a function to model a linear relationship between two quantities. (CCSS: 8.F.4)   ii. Determine the rate of change and initial value of the function from a description of a relationship or from two ( $x, y$ ) values, including reading these from a table or from a graph. (CCSS: 8.F.4)   iii. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. (CCSS: 8.F.4)   iv. Describe qualitatively the functional relationship between two quantities by analyzing a graph. (CCSS: 8.F.5)   v. Sketch a graph that exhibits the qualitative features of a function that has been described verbally. (CCSS: 8.F.5)   vi. Analyze how credit and debt impact personal financial goals (PFL)	
	$\begin{aligned} & \text { MA10-GR.7-S.1-GLE.1- } \\ & \text { EO.a } \end{aligned}$	Analyze proportional relationships and use them to solve real-world and mathematical problems.(CCSS: 7.RP)	

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 5	Students use a variety of tools and techniques to measure, apply the results in problem-solving situations, and communicate the reasoning used in solving these problems.		
Benchmark 1	Measure quantities indirectly using techniques of algebra, geometry, or trigonometry.		
C. Given the rate of change, model realworld problems algebraically or graphically.	$\begin{aligned} & \text { MA10-GR.8-S.2-GLE.3- } \\ & \text { EO.b (i-vi) } \end{aligned}$	Use functions to model relationships between quantities. (CCSS: 8.F)   i. Construct a function to model a linear relationship between two quantities. (CCSS: 8.F.4)   ii. Determine the rate of change and initial value of the function from a description of a relationship or from two ( $x, y$ ) values, including reading these from a table or from a graph. (CCSS: 8.F.4)   iii. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values. (CCSS: 8.F.4)   iv. Describe qualitatively the functional relationship between two quantities by analyzing a graph. (CCSS: 8.F.5)   v. Sketch a graph that exhibits the qualitative features of a function that has been described verbally. (CCSS: 8.F.5)   vi. Analyze how credit and debt impact personal financial goals (PFL)	
	MA10-GR.HS-S.2-GLE.2EO.a.ii	Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs. (CCSS: F-LE.2)	

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 5	Students use a variety of tools and techniques to measure, apply the results in problem-solving situations, and communicate the reasoning used in solving these problems.		
Benchmark 1	Measure quantities indirectly using techniques of algebra, geometry, or trigonometry.		
d. Describe how changing the measure of one attribute of a geometric figure affects the other measurements.	```MA10-GR.HS-S.4-GLE.2- EO.a (i-iv)```	Understand similarity in terms of similarity transformations. (CCSS: G-SRT)   i. Verify experimentally the properties of dilations given by a center and a scale factor. (CCSS: GSRT.1)   1. Show that a dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. (CCSS: GSRT.1a)   2. Show that the dilation of a line segment is longer or shorter in the ratio given by the scale factor. (CCSS: G-SRT.1b)   ii. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar. (CCSS: G-SRT.2)   iii. Explain using similarity transformations the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. (CCSS: G-SRT.2)   iv. Use the properties of similarity transformations to establish the AA criterion for two triangles to be similar. (CCSS: G-SRT.3)	
	$\begin{aligned} & \text { MA10-GR.7-S.4-GLE.2- } \\ & \text { EO.d } \end{aligned}$	Solve real-world and mathematical problems involving area, volume and surface area of two- and threedimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms. (CCSS: 7.G.6)	
	$\begin{aligned} & \text { MA10-GR.7-S.1-GLE.1- } \\ & \text { EO.b } \end{aligned}$	Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like or different units. (CCSS: 7.RP.1)	

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 5	Students use a variety of tools and techniques to measure, apply the results in problem-solving situations, and communicate the reasoning used in solving these problems.		
Benchmark 2	Select and use appropriate tools and techniques to measure quantities in order to achieve specified degrees of precision, accuracy and error (or tolerance) of measurements.		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Select and use appropriate tools and techniques to measure quantities in order to achieve specified degrees of precision, accuracy, and error of measurements.			This is part of the standard for mathematical practices, "Use appropriate tools strategically" and "Attend to precision".
b. Given commonly used multi-dimensional figures, determine what units and measurements need to be taken.			This is part of the standard for mathematical practice, "Use appropriate tools strategically".


| Standard 5 | Students use a variety of tools and techniques to measure, apply the results in problem-solving situations, and <br> communicate the reasoning used in solving these problems. |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Benchmark 3 | Determine the degree of accuracy of a measurement (for example, by understanding and using significant <br> details). |  |  |
| Assessment Objective | CAS Alignment Code | CAS Expectation Text | Comment |
| a.Determine the number <br> of significant digits <br> when measuring and <br> calculating with those <br> measurements.MA10-GR.HS-S.1-GLE.2- EO.a.iiiChoose a level of accuracy appropriate to limitations <br> on measurement when reporting quantities. (CCSS: <br> N-Q.3) |  |  |  |

Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10


Transitional Colorado Assessment Program Assessment Framework - Mathematics Grade 10

Standard 6	Students link concepts and procedures as they develop and use computational techniques, including estimation, mental arithmetic, paper-and-pencil, calculators, and computers, in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 1	Use ratios, proportions, and percents in problem-solving situations.		
C. Apply direct variation to problem-solving situations.	$\begin{aligned} & \text { MA10-GR. } 7 \text {-S.1-GLE.1- } \\ & \text { EO.c (i-iv) } \end{aligned}$	Identify and represent proportional relationships between quantities. (CCSS: 7.RP.2)   i. Determine whether two quantities are in a proportional relationship. (CCSS: 7.RP.2a)   ii. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships. (CCSS: 7.RP.2b)   iii. Represent proportional relationships by equations. (CCSS: 7.RP.2c)   iv. Explain what a point ( $x, y$ ) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0,0)$ and $(1, r)$ where $r$ is the unit rate. (CCSS: 7.RP.2d)	


Standard 6	Students link concepts and procedures as they develop and use computational techniques, including estimation, mental arithmetic, paper-and-pencil, calculators, and computers, in problem-solving situations and communicate the reasoning used in solving these problems.		
Benchmark 2	Select and use appropriate algorithms for computing with real numbers in problem-solving situations and determine whether the results are reasonable.		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Apply appropriate computational methods to solve multi-step problems	$\begin{aligned} & \text { MA10-GR.7-S.1-GLE.2- } \\ & \text { EO.C } \end{aligned}$	Solve real-world and mathematical problems involving the four operations with rational numbers. (CCSS: 7.NS.3)	
involving all types of numbers from the real number system.	$\begin{aligned} & \text { MA10-GR.8-S.1-GLE.1- } \\ & \text { EO.d } \end{aligned}$	Apply the properties of integer exponents to generate equivalent numerical expressions. ${ }^{3}$ (CCSS: 8.EE.1)	


Standard 6	Students link concepts and procedures as they develop and use computational techniques, including   estimation, mental arithmetic, paper-and-pencil, calculators, and computers, in problem-solving   situations and communicate the reasoning used in solving these problems.		
Benchmark 3	Describe the limitations of estimation and assessing the amount of error resulting from estimation within   acceptable tolerance limits.		
Assessment Objective	CAS Alignment Code	CAS Expectation Text	Comment
a. Determine when estimation is   an appropriate method to   solve a problem and describe   what error might result from   estimation.		This is part of the   standard for   mathematical practices,   "Use appropriate tools   strategically" and "Attend   to precision".	

Note: Some assessment objectives or parts of assessment objectives are not contained within the Colorado Academic Standards at or below this grade level but will continue to be assessed by the TCAP in $\mathbf{1 0}^{\text {th }}$ grade. The concepts from these objectives are reflected in the table below.

Grade 10 Mathematics	Relevant   Assessment   Objective(s)
Recognizing and categorizing types of distributions	3.4 b
Using mean and standard deviation to determine the relative position   of data points on a normal distribution	3.4 c
Describing cylinders, cones and spheres that result from the rotation   of rectangles, triangles and semi-circles	4.1 d

